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NON-LOCAL CRITERIA FOR THE EXISTENCE AND STABILITY OF PERIODIC
OSCILLATIONS IN AUTONOMOUS HAMILTONIAN SYSTEMS®

A.A. ZEVIN

The conditions under which single-parameter families of periodic solutions
(the existence in a sufficiently small neighbourhood of the origin of
coordinates follows from the Lyapunov theorem (see /1/)) can be continued
in a parameter to the boundary of the given domain, in particular to a
certain isoenergetic surface, are found. These conditions, which can be
verified by the use of the Hessian of a Hamilton function, also ensure
the orbital stability of solutions to a first approximation. Bilateral
estimates of the oscillation periods are obtained, and it is established
that any solution with a period which satisfies such an estimate belongs
to the corresponding family. As an example, the non-linear oscillations
of a string with lumped masses are examined.

The well-known non-local results relevant to the periodic oscillations
of autonomous Hamiltonian systems are, as a rule, theorems on the existence
of periodic solutions (see reviews /2—4/). One group of papers establishes
the existence of periodic solutions with a specified value of the Hamiltonian,
and other papers, establish solutions with a specified period; in the
first case assumptions and made regarding the form of the corresponding
constant energy surface; and in the second assumptions are made regarding
the behaviour of the Hamiltonian in the vicinity of the equilibrium
configuration and at infinity. The majority of the results were obtained
by variational methods, the desired periodic solutions being identified
with the stationary points of certain functionals. The discussion in the
present paper is based on other concepts.

1. Consider the system.
oH

Z; =—02‘+”' x{,m:—a—z‘, i—14,...,n (11)
where %, ..., %, and %p, ..., T3, are the generalized coordinates and momenta, and H (2, ..., Za,)
is the Hamiltonian function, doubly differentiable with respect to z;.

Let x°(¢) = (z° (¢),. . ., 23" (f))) be a periodic solution of system (1.1) with period T, (here
the prime denotes transposition). The corresponding variational equation is
Jy = A,(t)y (1.2)
aH

_ Y ° 2n Y °———
Aoi)=la O aw—zm|

0 —1I, ]
J= In 0 ) y=(?/1,---'y2n)

where I, denotes the unit matrix of order n.
We will recall some well-known facts. System (l.l) admits of the integral

H (2, (1), ..., Zsn (£)) = const, (1.3)
*prikl.Matem.Mekhan.,50,1,64-72,1986
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Let Y (f) be a matrizant, and p,(i=1, ..., 2n) the multiplicators of Eq.(1.2), i.e. the
eigenvalues of the monodromy matrix Y (To). Because system (1.l) is autonomous, Eq.(l.2) has
a periodic solution y°(f) = x™ (f), the multiplicator p = 1 corresponds to this solution. Since
(1.2) is canonical, the multiplicity of this multiplicator is k> 2 (incidentally, this
deduction also holds for an autonomous system of general form, which has a first integral).
The case of k=2 1is 'typical' while that of k> 2 1is realized for some values of H.

The vector-function z°(t) = (0H/8zy, . . ., 0H/8%s,) |x=x(ty is a periodic solution (see /1/) of
the adjoint equation

Z=—(J4,(t) z 1.4
Differentiation of (1.3) with x = x° (f) yields the identity
@), y)=0 (1.5)
As a rule, the closed trajectories of the autonomous Hamiltonian systems are not isolated:
they form single-parameter families. The following auxiliary theorem gives sufficient

conditions for the solution x°(f) to be a member of such a family.

Theorem 1. 1If one Jordan block matrix or its multiplicity % =2 corresponds to the
multiplicator p =1, then for sufficiently small |s| system (1.1) has a unique single-parameter
family of solutions x (¢, s) such that x (¢, 0) =x° ().

Proof. Let z;(f, ¢, .».,0sy) be a solution of system (l.l) which satisfies the initial

conditions z; (0, &y, v .., %ay) =0; (i=1,...,2n). If, for certain a;, ..., 0y and T the equations
2 (T, 0q ooy 099) =g, i =1,...,2n (1.6)
hold, then the corresponding solution z; (f, &y, ..., @) is periodic with period T.

Since system (l1.1l) is autonomous, one of the quantities can be regarded as known. To be

specific, we take @4, = C, choosing C such that
Yo" (0) = 0, 25,° (0) 5= 0 1.7

Since xX° () =x° (¢ + Ty), when T =Ty, a;=z,"(0), s, = C Eqs.(1.6) hold. If for some
a; and T sufficiently close to z;°(0) and T, then 2n — 1 equalities (1.6) are satisfied, and
by virtue of (1.3) and the second condition (1.7), we have o, (T, &y, . . ., Ggp1, ) = C, that is
the last equation in (1.6) is also satisfied.

As we know, 2n — 1 Egs.(1.6) determine, for sufficiently small |s|, a unique single-
parameter family T (s),a (8), ... @p (s), which for s=0 becomes To, 21° (0), ..., Zony (0) if the
rank of the corresponding Jacobian matrix,

azy dz; 1 [0
ot da, T Bty
B= : :
0ypny 0%y, 0zgn_q _
at o, T fag, ;=%;°(0), T=T,

equals 2n — 1.

First we assume that the Jordanian block matrix corresponds to the multiplicator p =1
i.e. Eq.(1.2) has a unique To—periodic solution y°(f) (accurate to within a multiplier). We
shall show that in this case the matrix B, obtained from B by crossing out the first column,
is not singular and, therefore, the rank B = 2n — 1.

Let us assume that det B; = 0; then the equation B;y =0 has the non-trivial solution
15+ - +» Yon-1)'- As we know,

0z, (T, 01, ... Og,)

Y (To) = o

[" (@=22(0), T =T)

and therefore matrix B, can be expressed in the form B; = Yau-1,en1 (T0) — lan-1» where Ygp-aan (To)
is the matrix obtained from Y (T,) by crossing out the last column and the last row. Con-
sequently, for y!(y,,...rYm-1, 0) the first 2n — 1 components of the vector Y (Toy?! are yi,.. .,
Ym-1. Let y! () be a solution of Eq.(l.2), which satisfies the condition y! (0) = y', that is

y' () = Y (t)y’. Obviously, the solution 2°(f) of the conjugate system (1.4) and any solution

y () of system (1.2) also satisfy the relation

(2° (2), y (t)) = const (1.8)
Taking into account the fact that 2z°(0) =z° (Ty), y* 0) = y:* (To) (i =1,. .., 2n — 1), 2,,° (0) 5= O,
and using the above relation we find that y,.! (7o) = yg' (0) = 0. Therefore y!(T,) =y!(0) which
means that y!(f) is a periodic solution of Eq.(1.2). Since ¥, (0} =0, ya’ (0)= 0, thesolutions

y'(#) and ¥°(f) are linearly independent, which contradicts the assumption on the uniqueness
of the periodic solution of (1.2). Consequently, detB;5=0 and the rank B = 2n — 1: this
proves the first assertion of the theorem.

Let us now assume that the multiplicity of the unit multiplicator is k¥ = 2, and the simple
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elementary divisors correspond to this multiplicator (otherwise we should have the same case as
above) . Suppose rank B << 2n — 1, then det B, = 0; we shall show that rank B, = 2n — 2. 1In fact,
for rankB;<< 2n — 2, the equation Bjy =0 has no less than two linearly independent solutions.
As can be seen from the argument above, to these solutions there correspond the periodic
solutions of (1.2),linearly independent with ¥° (), provided the total number of the periodic
solutions is two. Therefore, the matrix B,,obtained from B, by crossing out a certain row

and column (to be specific, the column should be the last), is non-singular.

Since rank B << 2n — 1, the determinant of matrix B, obtained by crossing out the last
column is zero. Consequently, the equation Bsy = 0 has the non-trivial solution a = (¢, €)',
where ¢ = (cy,. - +» Can-3). Here ¢, 0, otherwise the solution of the equation B,y = 0 would have
a non-trivial solution y = ¢’, which is impossible because det B, 0.

The identity B = 0 can be expressed as

CGYTO + an—l.zn—zc' = (cr 0)’, YT° = (y; (To), oy ;ﬂ—l. (To))' (1'9)

where Yy, 1942 is the matrix obtained from Y (T,) by crossing out the last row and the last
two columns.
Let us assume that

Y=co¥’(To) + Y (To)¥', ¥'=(e, 0,0) (1.10)

As follows from (1.9),y? =y (i =1,..., 2n — 1). By virtue of (1.8), (z°(0),y}) = (z2°(Ty),
Y (To)y'), and therefore from (1.10) and (1.5) we obtain

(2°(0), ¥)=(2°(To), ¥* — coy° (To)) = (z°(T0), ¥?)

Since yla = ?/tl (l = 17 CERERY | 2n — 1)7 z° (TO) =1z’ (0)1 z%no 7= 01 we have yﬂﬂ’ = yzul = 0. Thus

y? =y!, that is
Y=Y (T ¥ + coy° (To), co7#0 (1.11)

In view of the equation y°(To) =Y (7o) ¥’ (T,), this relation shows that the vectors y°®(Ty)
and y! belong to a cyclic subspace of the matrix Y (Ty)which corresponds to the eigenvalue
p = 1. However, this is impossible since, by the above assumption, the corresponding elementary
divisors are simple.

Therefore, the assumption that rank B <2n —1 leads to a contradiction. Thus, rank
B = 2n — 1 , and this ensures the existence and uniqueness of a single-parameter family of the
solutions o;(s), and T (s) of system (1.6), and therefore of the corresponding family z; (¢, s)
(z; (0, s) = a; (s)) of periodic solutions of system (l.1). The theorem is proved.

Setting o; =a;(s) and T = T (s) in relations (1.6), and differentiating them with respect
to s, we obtain

e,=Y(T)e, +x(T)7, (1.12)
__{ day(s) dayy, (5) dT (s)
“"‘( G )’ Tiv=—5

I1f the To-periodic solution y°(f) is unique then T,(0)#0. In fact, for T,(0) =0, by
virtue of (1.12) and because of the conditions y,,° (0) 5 0, (as), = Cs = 0, the solution vy (f)=
Y (t) @, is a To-périodic and linearly independent solution y° (). If for k¥ = 2 Eq.(1.2) has two periodic
solutions, then T, (0) = 0. Infact, for T, (0) = O the vectors @, and Yo {To) by virtue of (1.12) forma
cyclic subspace of the matrix Y (Ty) which corresponds to the multiplicator p = 1,and this is
impossible in view of the simplicity of the elementary divisors.

Let us show that for k = 2, the quantity H can be taken as the parameter s. The vectors
y°(0) and @, form a root subspace a,, a, of the matrix Y (T,), corresponding to the eigenvalue
p =1. Let b, and b, be the corresponding root subspace of the matrix Y (Ty)’. As we know (see

/5/) + A=det|| @@y, b) I}, =1 7= 0. Since the monodromy matrix of Eq.(1.4), Z(T¢) = (Y (7o) and

Z(Ty) and Z(To) 'have the same eigenvectors, we have Y (To)z° (0) = Z (To)"'z° (0) =2°(0), therefore we

can take b, = z° (0). Taking into account (1.5), we find A = —(a, z°(0)) (y° (0), by} = 0, hence

(o, 2° (0)) = dH (x (0, 5))/ds = 0. Therefore the quantity H can serve as a parameter which determines
the family of solutions in question.

Note. 1In proving the theorem we have ignored the Hamiltonian form of system (1.1).
Therefore the system is valid for autonomous systems of general form, which have integral (1.3)
(in particular, for Lyapunov systems). We also note that any system x = f(x,f§ containing
the parameter p can be reduced to the form indicated by including p in some of the variables.

2. Before we discuss the basic findings, we shall comment on the stability of pericdic
solutions. In those non-linear systems which have a unique first integral, the non-simple
elementary divisors correspond, as a rule, to the multiplicator p = 1. For this reason, Eq.
(1.2) has a solution of the form y!(¢) + &y’ (!) and, therefore, the solution x°(f) is Lyapunov-
unstable. The necessary condition of the orbital stability of x° () is the boundedness of the
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remaining solutions. This certainly occurs if all the multiplicators of (1.2) lie on the unit
circle and, with the exception of a double multiplicator p =1, are definite, i.e. there are
no coinciding multiplicators of different kind among them. We shall describe the solution
x°(f) for which these conditions are satisfied as orbitally stable to a first approximation.

We assume that x =0 is the equilibrium position of system (1.1), and (Hy (0) = 0),
A (0) = Hix (0) is a fixed-sign matrix (without loss of generality, positive definite). By
this condition the eigenvalues of the matrix J !4 (0) are imaginary (see /5/); we denote them
by i’ (k=1,...,n 0<o;< o). If ooy m for a certain j(i=1,...,n;js=i;m 1is an
integer), then in accordance with the Lyapunov theorem (see /1/) in a sufficiently small
neighbourhood of the origin of coordinates there exists a unique single-parameter family of
periodic solutions x’ (¢, s) with periodic T, (s), such that x/(z, s) — 0, Ty (s) > 2n/0 when s—0.

Let Q be a specified bounded domain, and x =0 its inner point, system (1.1l) not having
other equilibrium positions in Q. Below we find the sufficient conditions for the family
x! (¢, 5) to be continued, in a unique way, with respect to s, to the boundary 8Q of the
domain Q, i.e, x’(t,8)&= Q when s<= (0,5,), x(t,,s,) = 0Q for certain f, and $,. We note that
the algorithms for a numerical search for periodic solutions of a Hamiltonian system by the
method of continuation with respect to a parameter were developed in /6, 7/ and other publica-
tions.

Let A_ and A, by symmetrical positive definite constant matrices which satisfy the
inequality

A_<< A (X) < A+ for xe=Q (21)
As usual, the latter means that (4d_e, ¢) < (4 (x)e,¢) <<(4,e¢,¢) for any vector e¢=%0.
We denote the eigenvalues of the matrices J™'4_ and J'4, by + ie,” and 4+ it

Theorem 2. If for a certain j,

mne ,

— 2.2)

Lk=1,...,nm=12,...; ks#=j for i=j

~ - + +
— [ 97t o, o+ o
.t

then the family x’ (¢, s) 1is, in a unique way, continuable in s to the boundary of the domain
Q. The corresponding period T;(s) satisfies the inequality

TF<T ()< T T =

T
]

- 2
T _—_—m;‘_ 23)

For any s (0, s,] the solution x7(f, s) is orbitally stable to a first approximation.

Proof. By (2.1) and (2.2) we have o;” < o < ©;%, 0" ©;°/m, therefore for small s the
family x/ (¢, s) indicated in the theorem exists. First we shall show that if x/(¢,5) is
continuable in s to a certain (0,s] then the corresponding period T, (s) satisfies the
inequality (2.3).

Consider the selfconjugate boundary value problem

Jy =l +AR@O—A4A)y, yO =y (D (2.4)

where R (f) is a symmetrical positive definite matrix.

We denote by = imy, (A) the eigenvalues of the matrix J1[A_ + A (4, — A)]. When A grows
from zero to unity, , (A)increases monotonically from w;~ to @*. For R = A, the positive
eigenvalues of problem (2.4) are the roots of the equations 2am/T =, (A) ((k=1,..., n; m =
1,2,...). By (2.2), o;(M)5%= m? [0, o] for A= (0, 1), k= j; o] > 0;5/2. Therefore, when
R =4,, we have either T =T or T = Iy, andthe boundary value problem (2.4) has no
eigenvalues on (0.1). since 4 (x;(¢ 8)) << A4,, and for an increase in R (f) the positive eigen-
values decrease (see /8/), then for R=A@X (%, 9), T =T;# or T =T, the eigenvalues A;7= 1.
Since y =x’ (¢, s) satisfies Eq.(1.2), for R(t) = A (x’(¢,8)) and T = T,(s) problem (2.4) has
an eigenvalue A =1. Thus, T;(s)= T*, T;(s)s= Ty, i.e. for s (0, inequality (2.3) is
not violated.

For R = A, the multiplicators of the first and second kind of Eq.(2.4) are nrl(A) =
exp (iey (A) T) and r? (A) =exp(—imy (M) T) respectively; for Ae10,4] they are on the arcs Ii'=
(rt (0), 1t (1)) anad T)® = (r? (0), 2 (1)) of the unit circle. By virtue of (2.2) and (2.3) only the
arcs I,! and I',* have common points, and therefore for )= [0, 11the multiplicators of a different
kind r (A) and r,? (A} arenot identical, with the exception of rit (M) and r%; (A). The same argument
holds for the multiplicators pp* (M. pg® (M of (2.4) when R = 4 (x (t, 9)).

In fact, when A increases the multiplicators p,! (M) and pg* (&) (pp! (0) = rp! (0), pg® (0) = rg® (0)
move along arcs Tp! and [, anticlockwise and clockwise respectively (see /8/). Let us assume
that for A< 1 they meet; then for a certain A,<1 the multiplicator pg! or p,* is at the
point p=yp,, not on the arcs Ty, T#(i=1, .., ». Consequently, if R=4 (xj (t, 8)), the self-
conjugate boundary value problem for Eq.(2.4) with the boundary conditions y(T;) =,y (0) has
the eigenvalues A, < (0, 1). Because, as R increases the positive eigenvalues decrease, and at
the same time A;s=0 by virtue of (2.3), for R =4, this problem also has eigenvalues
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M e (0,1), i.e. one of the multiplicators r(Ax), ri# (Az) equals p, However, this is impossible
because r (M el r@MeTl® for Aell, 1l

Thus, the multiplicators pp1 and pl(p,g=1, .., n;p g5 J) of Eq.(1.2) which corresponds
to the solution x’(f,s) lie on the unit circle and are definite. Consequently, the multi-
plicity of the multiplicator p = {equals two, and by Theorem 1 the solution x (t,5) is locally
continuable in s. For this reason, when x7(Z, s)e R only that value of s=35, can be a limit
value- for which ¥’ (¢, s)—>¢ as s-»s,. By this condition, system (1.1) in the domain £ has a
unique equilibrium position x = 0, and therefore ¢ = (. Since only the numbers T, = 2n/0/
(i =1,..., n), can serve as bifurcation points of the equilibrium position on the T axis, by
(2.2) and (2.3), as s-»s, we have T;(s)— T, . But then together with x,(t,s) there exists
a single-parameter family x* (¢, s) = x’ (¢, s, — s) such that x* (¢, 8 =0, T (s) = 2n/w; as s—0.
This contradicts the assertion of Lyapunov's theorem on the uniqueness of such a family, and
it proves that x’(f,s) is continuable in s up to the boundary of the domain Q.

The above argument shows that the multiplicators of Eq.(l.2) are definite when x =X’ (¢, 5),
with the exception of pjt =p;2 =1. For this reason xJ(¢, §) is orbitally stable to a first
approximation. The theorem is completely proved.

3. ©Let us discuss the theorem in more detail. Suppose that for x& Q we have H (0) =
0, H (x) < M. Then, provided that (2.2), any periodic solution x (¢)& & with period T & (T,
T;)  Dbelongs to the family X/ (t, 5).

In fact (see the proof of Theorem 2), provided that (2.2) the multiplicity of the multi-
plicator p=1 which corresponds to any solution x(#) with period T e (T;* I;7) equals two.

In conformity with Theorem 1, x(f) belongs to a single-parameter family of periodic solutions,
and the quantity H can be taken as a parameter. Continuing x{, H) in H up to H=0 (here,
as can be seen from the proof of Theorem 2, the inequality (2.3) is maintained, and T (H)— T;°
as H—0), we can find by means of Lyapunov's theorem that for small H, the family x(, H) is
identical with the family x’(:, H) indicated in the theorem. Because of the uniqueness of

the continuation, these families are identical for all H< M.

The number of the indices je [1,..., n) for which condition (2.2) is satisfied, yields
the lower estimate of the number of periodic solutions which lie on any isoenergetic surface
Hxy=HM. )

If (2.2) is satisfied for all x& R¥®, then x (¢, X) can be continued in H on (0, o).

At the same time for any H the solution with periocd I e (T;*, T;7) is unique and belongs to
the family x' (¢, H).
As shown in /9/, provided that

o= oy, ' Vm k=1,...,0,m=1.2,... 3.1)

system (1.1) has a unique solution with period T = 2n/@. Since x(f)=0 is such a solution,
oscillations with period 2n/w are not possible (as a corollary, oscillations with period
T < 2n/w,' are also impossible). Hence it follows in particular that under the condition
(2.2), T;(s) is the minimum period of the solutions X' (¢, s) Dbecause, for o€ p(w;, 0;%)
condition (3.1) holds (p>1 is an integer).

On the other hand, if

- - + +
mép[ ©; :}wk , o u—)l;_wk ], i k=1,... n; (3.2)

is=j for k=j, m=1,2,...

then any periodic solution x (f) with period T & p(T;*, T;") has a minimum period T, = T/p,
and therefore it belongs to the family x’ (¢, s).
In fact, (see the proof of Theorem 2), under the condition (3.2) the multiplicity of
the multiplicator p=1 of (l.2) is 2; therefore any solution x(f) is continuable in H up
to # =40, and at the same time the corresponding period T (H) € p (T;*, T;7). But, by virtue of
(3.2), o€ o, o] for igj, and consequently T (H)— 2np/e®, and T, (H)— 2n/0 as H -0, that
is x(t) belongs to the family x’(t,s).
We assume that H (x) is an even function with respect to the generalized momenta, i.e.
H(zy, .oy Zgy Tngty e oo Tan) =H (21, . - oy Tpy — Znagy -« oy —Tag) (3.3)
Then, together with the solution x (¢) = (z, (£),. . ., Zs (£))’, the function x*{(f)=(z,(—1?),...,
Zp (—1), —Zpsr (—1), 2 oy— 24, (— #))’ also satisfies system (1.1). If the periodic solution x ()
is unique (to within a shift in t), then for a certain h the identity x* (f) = x (¢ + k) should

hold; hence z; (1) = z; (—T), Zisn (t) = —Zpuyn (—7), where v =t — h/2. Consequently, provided that
(2.2) and (2.3), and with an appropriate choice of the reference point, we have
zij (t9 s)= zfj (_ t, 8), x{'-&n (t, S) == — zz+n ('— i, S)' = 1., P (3.4)

Let us assume that H (x) is an even function of the coordinates and momenta

H (x) = H (—x) (3.5)
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In this case the theorem remains valid, if we replace (2.2) by the weaker condition,

Zm'é[m‘_+0'_ ""++‘°"+]. k=1, m iF] (3.6)

F ] =
oy o;

Py 7 e s 4 O
for k=j; m=\1i,3,...

By this condition, o} 0°/m, and therefore in a sufficiently small neighbourhood of the
3.5}

origin, xf(t. &8 exists. Provided that (3.5 the function —xiit o alse satisfices sustam (1 11
v--, n X488 eALELS A LWVALVL LIAL (S p W TWAalTion AT (s 8] UADU DSULADLLATS SYSUEM \L4) G

henge, taking into account the uniqueness of x’(t,s) we find that for a certain h, X' (t+h o=
—x/(t, 5. Consequently, x/{t4 2k, s =x’(t,5), k= T/2; that is

x/ (¢t + T/2, 8) = — x (t, 8) (3.7)

It follows from (3.5) and (3.7) that A® =4 (—x), 4; ) =A X/ (t,5) =4 7 (¢t + T/2, 8) , i.e.
the smallest period of the matrix A4;() is 7/2, and therefore the multiplicators of (1.2),
pi , equal the eigenvalues of the matrix Y (7/2). We find, in a way similar to the proof of
Theorem 2, that under condition (3.6) all multiplicators lie on the unit circle and, with the
exception of p= —1, they are all definite. Since the eigenvalues of the matrix Y (T) are
pi (Y (T) = Y (T/2)}) , the multiplicity of its unique eigenvalue is two, which in conformity with
Theorem 1 ensures the uniqueness of continuing x’(t,s) in s in the domain Q. 1In turn, the
latter guarantees relation (3.7).

4. Aas an example, let us look into the oscillations of a string with limped masses.
Assuming that there is no longitudinal shift of mass, we shall find the Hamiltonian function

EF 1 (T - 1 v 2,
=TT 2T, \EF +VE R -y +"2_Z_m‘_,—
i=0 i

i=1

y=z,—z (=01,..,n=1), z,=2, 2=0
where =z,..., 2, are the transverse shifts of masses m,,..., my} 2pu, .., 2:n are the corresponding
momenta; ,..., &y are the lengths of the successive segments; E is the elastic modulus, F

is the cross-sectional area, and 7, denotes the initial tension of the string.
We reduce the Hessian of the Hamilton function to the form

1V EF [ (k—1)13 3 2,
(A@x)e, c)=ZT/-———ri\b;+2 s (4.4
& \ V(z TL ) / < m;
bi=cy—e (=0,1,...,0—-1), b =c, =0
Clearly, when k>1, to obtain the -form (4,¢,¢), or (d.e,¢) it is sufficient to set in
(4.1) z3=0 or z*=z'=maxz? when gz, 7=Q({=201,...,n); and for k<1 Jjust the opposite.
Let of and e; be the corresponding frequencies, then ot = P, 0~ =@ for >, a" = o, o=

w; for k< 1. The quantities w;® equal the frequenpies of small natural oscillations, therefore
for k>1 the periods T;(H) of the solutions (¢, H) are longer, and for k<1 shorter, than

the corresronding vericods of small oscillationg, TP for k=1 the system bacomes linear. We

TNne CorrecspOliQln g pPeXiQcs Smasl osci..atieons, Iy Ior Tem oecomes Linear

note that physically k is the relative elongation of the string due to the tension T,
Since H (x) = H (—x), due to condition (3.6), in the domain Q there exists the family of
ericdic sclutions x ¢, HY as .‘i( HY— 0 and T:{H) —2n/e® as H—0. This familv is orbitallvy

ricdic selutions X {, H) as ¥, H) and Ti{H)}—2n/e® as H -0 This family orbitally

R3

stable to a first approximation, and satisfies relations (3.4) and (3.7).

When the domain Q increases, the corresponding frequencies o;(R) then to ¢ and for this
reason the number of indices j for which the condition (3.6) holds, increases.
If Q= R, assuming in (3.1) that z — o, we find that o; = of/)k. Let us denote by
ki~ and k* the limit values of k for which the condition (3.6) is violated (thus, for k;-
Y T avdmd e -.Ju I 1am mantdmcalhla kA s Ml anseler L4 vz Ta +ha FA1llaArdnes oav
K< Rj the solution {6, 1) 15 Continuasit O any u/ . \.*ca:_a._y, nJ eJua+s Wi 10..0WLING Luiocl

nearest to unity from the right; and &, that from the left:

Dos O

PREDSS - N IR - I " N

©,° -+ oy ) ( 26m )
———— or ————
( 20.°m ©° 4 o

Lk=1,...,n i==] for k=ji m=12,...
Therefore, ki~ = 1/ks. The relation Ik, = (0pa®+ @) (204°)% is computed directly.
For example, let n=4, =1, m=m (i=1{, . 4), ZT,,I/’ (lom)",' = 4. Then o =sink;, k= /2 (n+
n. hence ;"= 0.3090, «,° = 0.53878, «;° = 0.8090, w’ = 0. 95i2 Corresponding calculations yield &~ = 0£.983,

=1.089, k== 0.709, k* = 1.411, ks~ = 0.848, ky* = 1.183, k= = 0.857, kt = 1.167.

Notice that in the case of a finite domain @ the solution x’(:, H) is certainly continuable

P U S P ol T = R CYY et -~
the frequencies w;(Q)> o’y k7 for k>1 or w; (R) < oV &5 for

o

to the boundary of @ if
k<t t=1,..., n).
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STABILITY OF THE UNIFORM ROTATION OF A GYROSTAT ROUND THE VERTICAL
MAIN AXIS ON AN ABSOLUTELY SMOOTH HORIZONTAL PLANE™

S.A. BELIKOV

The motion of a gyrostat on an absolutely smooth plane is discussed. A
Hamilton function which gives the canonical equations of motion is
obtained. This admits of particular solutions, namely uniform rotations
round a vertical axis which are identical with that of the uniform rotations
of the rotor. A transition to a system with two degrees of freedom is
realized, and the expansion of the Hamiltonian in the vicinity of the
corresponding position of equilibrium, with an accuracy to within fourth-
order terms, is obtained. In the region of admissible values of the
parameters the domain of the necessary stability conditions, and the
domains where the Hamiltonian functions are of fixed sign and alternating,
are examined. 1In those cases where the Hamiltonian is not fixed sign,

its normalization is performed, both a non-resonance situation and
resonances of the first, second and fourth order being considered. The
sufficient conditions for stability of uniform gyrostat rotation in terms
of constraints on the coefficients of normal forms are obtained. For a
clear interpretation of the results, special cases where the values of
all the parameters except two are fixed, are given. The plane domain of
the necessary stability conditions and resonance curves are constructed,
and using computer results stability on the curves is discussed.

The stability of uniform rotations of a heavy solid around the
vertical principal and minor axes on an absolutely smooth, and on an
absolutely rough horizontal plane, and also on a plane with viscous
friction is discussed in /1-4/. The stability of uniform rotations of
a gyrostat round the vertical principal axis on absolutely smooth and
absolutely rough horizontal planes was considered in /5, 6/. Investigations
of the motion of a solid on an absolutely rough plane, the body being
perturbed with respect to rotation round the principal axis (in particular
with respect to the steady position of equilibrium), are described in
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